Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Cutan Med Surg ; 27(3): 260-270, 2023.
Article in English | MEDLINE | ID: covidwho-2243012

ABSTRACT

As coronavirus disease (COVID-19) vaccines continue to be administered, dermatologists play a critical role in recognizing and treating the cutaneous manifestations (CM) associated with the vaccines. Adverse cutaneous reactions of COVID-19 vaccines reported in the literature range from common urticarial to rare vesiculobullous reactions. In this study, we performed a (1) scoping review to assess the occurrences of vesicular, papulovesicular, and bullous CMs of COVID-19 vaccines and their respective treatments, and (2) a narrative review discussing other common and uncommon CMs of COVID-19 vaccines. Thirty-six articles were included in the scoping review, and 66 articles in the narrative review. We found that vesicular, papulovesicular, and bullous lesions are infrequent, reported mostly after the first dose of Moderna or Pfizer vaccines. Eleven of the 36 studies reported vesicular reactions consistent with activation or reactivation of the herpes zoster virus. Most vesicular and bullous lesions were self-limited or treated with topical corticosteroids. Other CMs included injection-site, urticarial or morbilliform reactions, vasculitis, toxic epidermal necrolysis, and flaring of or new-onset skin diseases such as psoriasis. Treatments for CMs included topical or oral corticosteroids, antihistamines, or no treatment in self-limited cases. Although most CMs are benign and treatable, the data on the effect of systemic corticosteroids and immunosuppressive therapies on the immunogenicity of COVID-19 vaccines is limited. Some studies report reduced immunogenicity of the vaccines after high-dose corticosteroids use. Physicians may consult local guidelines where available when recommending COVID-19 vaccines to immunosuppressed patients, and when using corticosteroids to manage the CMs of COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Skin Diseases , Humans , Blister/pathology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Skin/pathology , Skin Diseases/drug therapy , Skin Diseases/etiology , Skin Diseases/pathology
2.
Nat Commun ; 13(1): 6806, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2117247

ABSTRACT

Our knowledge of the role of the gut microbiome in acute coronavirus disease 2019 (COVID-19) and post-acute COVID-19 is rapidly increasing, whereas little is known regarding the contribution of multi-kingdom microbiota and host-microbial interactions to COVID-19 severity and consequences. Herein, we perform an integrated analysis using 296 fecal metagenomes, 79 fecal metabolomics, viral load in 1378 respiratory tract samples, and clinical features of 133 COVID-19 patients prospectively followed for up to 6 months. Metagenomic-based clustering identifies two robust ecological clusters (hereafter referred to as Clusters 1 and 2), of which Cluster 1 is significantly associated with severe COVID-19 and the development of post-acute COVID-19 syndrome. Significant differences between clusters could be explained by both multi-kingdom ecological drivers (bacteria, fungi, and viruses) and host factors with a good predictive value and an area under the curve (AUC) of 0.98. A model combining host and microbial factors could predict the duration of respiratory viral shedding with 82.1% accuracy (error ± 3 days). These results highlight the potential utility of host phenotype and multi-kingdom microbiota profiling as a prognostic tool for patients with COVID-19.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Metagenomics/methods , Feces/microbiology , Post-Acute COVID-19 Syndrome
3.
Gut Microbes ; 14(1): 2128603, 2022.
Article in English | MEDLINE | ID: covidwho-2051074

ABSTRACT

Dysbiosis of gut microbiota is well-described in patients with coronavirus 2019 (COVID-19), but the dynamics of antimicrobial resistance genes (ARGs) reservoir, known as resistome, is less known. Here, we performed longitudinal fecal metagenomic profiling of 142 patients with COVID-19, characterized the dynamics of resistome from diagnosis to 6 months after viral clearance, and reported the impact of antibiotics or probiotics on the ARGs reservoir. Antibiotic-naive patients with COVID-19 showed increased abundance and types, and higher prevalence of ARGs compared with non-COVID-19 controls at baseline. Expansion in resistome was mainly driven by tetracycline, vancomycin, and multidrug-resistant genes and persisted for at least 6 months after clearance of SARS-CoV-2. Patients with expanded resistome exhibited increased prevalence of Klebsiella sp. and post-acute COVID-19 syndrome. Antibiotic treatment resulted in further increased abundance of ARGs whilst oral probiotics (synbiotic formula, SIM01) significantly reduced the ARGs reservoir in the gut microbiota of COVID-19 patients during the acute infection and recovery phase. Collectively, these findings shed new insights on the dynamic of ARGs reservoir in COVID-19 patients and the potential role of microbiota-directed therapies in reducing the burden of accumulated ARGs.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Gastrointestinal Microbiome , Probiotics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , COVID-19/complications , Drug Resistance, Bacterial/genetics , Gastrointestinal Microbiome/genetics , Humans , Probiotics/therapeutic use , SARS-CoV-2/genetics , Tetracyclines , Vancomycin , Post-Acute COVID-19 Syndrome
4.
Biophys Rev ; 14(1): 1-2, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1827165

ABSTRACT

On behalf of the Australian Society for Biophysics (ASB) and the Editors of this Special Issue, I would like to express our appreciation to Editor-in-Chief, Damien Hall, for arranging the publication of this Special Issue. The ASB is about five times smaller than our sister the Biophysical Society for Japan (BSJ) and tenfold smaller than the US Biophysical Society (USBS), but our meetings are notable because of the encouragement the Society gives to emerging biophysicists. It can be a terrifying experience for a PhD student to have to face a roomful of professors and senior academics, but invariably they appreciate the experience. Another feature of the ASB meetings is the inclusion of contributions from the Asian Pacific region. We now have formal ties with our New Zealand colleagues and our meetings with the BSJ contain joint sessions (see below). In 2020, despite the impact of COVID-19 (see Adam Hill's Commentary), there is a joint session with the University of California Davis. This Special Issue comprises 2 Editorials, 3 Commentaries, and 25 reviews.

5.
Gut ; 71(6): 1106-1116, 2022 06.
Article in English | MEDLINE | ID: covidwho-1685679

ABSTRACT

OBJECTIVE: The gut microbiota plays a key role in modulating host immune response. We conducted a prospective, observational study to examine gut microbiota composition in association with immune responses and adverse events in adults who have received the inactivated vaccine (CoronaVac; Sinovac) or the mRNA vaccine (BNT162b2; BioNTech; Comirnaty). DESIGN: We performed shotgun metagenomic sequencing in stool samples of 138 COVID-19 vaccinees (37 CoronaVac and 101 BNT162b2 vaccinees) collected at baseline and 1 month after second dose of vaccination. Immune markers were measured by SARS-CoV-2 surrogate virus neutralisation test and spike receptor-binding domain IgG ELISA. RESULTS: We found a significantly lower immune response in recipients of CoronaVac than BNT162b2 vaccines (p<0.05). Bifidobacterium adolescentis was persistently higher in subjects with high neutralising antibodies to CoronaVac vaccine (p=0.023) and their baseline gut microbiome was enriched in pathways related to carbohydrate metabolism (linear discriminant analysis (LDA) scores >2 and p<0.05). Neutralising antibodies in BNT162b2 vaccinees showed a positive correlation with the total abundance of bacteria with flagella and fimbriae including Roseburia faecis (p=0.028). The abundance of Prevotella copri and two Megamonas species were enriched in individuals with fewer adverse events following either of the vaccines indicating that these bacteria may play an anti-inflammatory role in host immune response (LDA scores>3 and p<0.05). CONCLUSION: Our study has identified specific gut microbiota markers in association with improved immune response and reduced adverse events following COVID-19 vaccines. Microbiota-targeted interventions have the potential to complement effectiveness of COVID-19 vaccines.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Adult , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunogenicity, Vaccine , Prospective Studies , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
6.
Trop Med Infect Dis ; 7(2)2022 Feb 03.
Article in English | MEDLINE | ID: covidwho-1674808

ABSTRACT

BACKGROUND: The relationship between HIV (human immunodeficiency virus) and COVID-19 clinical outcome is uncertain, with conflicting data and hypotheses. We aimed to assess the prevalence of people living with HIV (PLWH) among COVID-19 cases and whether HIV infection affects the risk of severe COVID-19 or related death at the global and continental level. METHODS: Electronic databases were systematically searched in July 2021. In total, 966 studies were screened following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Narratives were synthesised and data pooled for the global and continental prevalence of HIV-SARS-CoV-2 coinfection. The relative risks of severity and mortality in HIV-infected COVID-19 patients were computed using a random-effect model. Risk of bias was assessed using the Newcastle-Ottawa score and Egger's test, and presented as funnel plots. RESULTS: In total, 43 studies were included involving 692,032 COVID-19 cases, of whom 9097 (1.3%) were PLWH. The global prevalence of PLWH among COVID-19 cases was 2% (95% CI = 1.7-2.3%), with the highest prevalence observed in sub-Saharan Africa. The relative risk (RR) of severe COVID-19 in PLWH was significant only in Africa (RR = 1.14, 95% CI = 1.05-1.24), while the relative risk of mortality was 1.5 (95% CI = 1.45-2.03) globally. The calculated global risk showed that HIV infection may be linked with increased COVID-19 death. The between-study heterogeneity was significantly high, while the risk of publication bias was not significant. CONCLUSIONS: Although there is a low prevalence of PLWH among COVID-19 cases, HIV infection may increase the severity of COVID-19 in Africa and increase the risk of death globally.

7.
J Affect Disord ; 300: 571-585, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1670638

ABSTRACT

BACKGROUND: With the onset of the COVID-19 pandemic, many have experienced drastic changes in their academic and social lives with ensuing consequences towards their physical and mental well-being. The purpose of this systematic review is to identify virtual mindfulness-based interventions for the well-being of adults aged 19 to 40 years in developed countries and examine the efficacy of these techniques/exercises. METHODS: This mixed-methods systematic review follows the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines with a registered PROSPERO protocol. With a convergent integrated synthesis approach, IEEE Xplore, PsychInfo, Web of Science and OVID were searched with a predetermined criteria and search strategy employing booleans and filters for peer-reviewed and gray literature. Data screening and extraction were independently performed by two authors, with a third author settling disagreements after reconciliation. Study quality of selected articles was assessed with two independent authors using the Mixed Methods Appraisal Tool (MMAT). Studies were analyzed qualitatively (precluding meta and statistical analysis) due to the heterogeneous study results from diverse study designs in present literature. RESULTS: Common mindfulness-based interventions used in the appraised studies included practicing basic mindfulness, Mindfulness-Based Stress Reduction (MBSR) programs, Mindfulness-Based Cognitive Therapy programs (MBCT) and the Learning 2 BREATHE (L2B) program. CONCLUSION: Studies implementing mindfulness interventions demonstrated an overall improvement in well-being. Modified versions of these interventions can be implemented in a virtual context, so adults can improve their well-being through an accessible format.


Subject(s)
COVID-19 , Cognitive Behavioral Therapy , Mindfulness , Adult , Humans , Pandemics , SARS-CoV-2 , Young Adult
9.
Gastroenterology ; 162(2): 548-561.e4, 2022 02.
Article in English | MEDLINE | ID: covidwho-1475507

ABSTRACT

BACKGROUND AND AIMS: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with altered gut microbiota composition. Phylogenetic groups of gut bacteria involved in the metabolism of short chain fatty acids (SCFAs) were depleted in SARS-CoV-2-infected patients. We aimed to characterize a functional profile of the gut microbiome in patients with COVID-19 before and after disease resolution. METHODS: We performed shotgun metagenomic sequencing on fecal samples from 66 antibiotics-naïve patients with COVID-19 and 70 non-COVID-19 controls. Serial fecal samples were collected (at up to 6 times points) during hospitalization and beyond 1 month after discharge. We assessed gut microbial pathways in association with disease severity and blood inflammatory markers. We also determined changes of microbial functions in fecal samples before and after disease resolution and validated these functions using targeted analysis of fecal metabolites. RESULTS: Compared with non-COVID-19 controls, patients with COVID-19 with severe/critical illness showed significant alterations in gut microbiome functionality (P < .001), characterized by impaired capacity of gut microbiome for SCFA and L-isoleucine biosynthesis and enhanced capacity for urea production. Impaired SCFA and L-isoleucine biosynthesis in gut microbiome persisted beyond 30 days after recovery in patients with COVID-19. Targeted analysis of fecal metabolites showed significantly lower fecal concentrations of SCFAs and L-isoleucine in patients with COVID-19 before and after disease resolution. Lack of SCFA and L-isoleucine biosynthesis significantly correlated with disease severity and increased plasma concentrations of CXCL-10, NT- proB-type natriuretic peptide, and C-reactive protein (all P < .05). CONCLUSIONS: Gut microbiome of patients with COVID-19 displayed impaired capacity for SCFA and L-isoleucine biosynthesis that persisted even after disease resolution. These 2 microbial functions correlated with host immune response underscoring the importance of gut microbial functions in SARS-CoV-2 infection pathogenesis and outcome.


Subject(s)
COVID-19/microbiology , Fatty Acids, Volatile/biosynthesis , Gastrointestinal Microbiome/genetics , Immunity/physiology , Isoleucine/biosynthesis , Adult , Biomarkers/blood , Case-Control Studies , Feces/microbiology , Female , Humans , Male , Metagenomics , Middle Aged , Phylogeny , SARS-CoV-2 , Severity of Illness Index
10.
Int J Environ Res Public Health ; 18(18)2021 Sep 09.
Article in English | MEDLINE | ID: covidwho-1405457

ABSTRACT

Australia adopted hard lockdown measures to eliminate community transmission of COVID-19. Lockdown imposes periods of social isolation that contributes to increased levels of stress, anxiety, depression, loneliness, and worry. We examined whether lockdowns have similar psychosocial associations across rural and urban areas and whether associations existed between happiness and worry of loneliness in the initial wave of the COVID-19 pandemic in Australia. Data were collected using the "COVID-19 Living Survey" between 13 and 20 May 2020 by BehaviourWorks Australia at the Monash Sustainable Development Institute. The mean self-reported feeling of happiness and anxiousness (N = 1593), on a 10-point Likert scale with 0 being least happy or highly anxious, was 6.5 (SD = 2.4) and 3.9 (2.9), respectively. Factors associated with happiness were older age and having a postgraduate education. Participants worried about becoming lonely also exhibited reduced happiness (estimate = -1.58, 95%CI = -1.84--1.32) and higher anxiousness (2.22, 1.93-2.51) scores, and these conditions remained associated after adjusting for demographics. Interestingly, worry about loneliness was greater in rural areas than in urban communities. The negative impact of the COVID-19 lockdown on rural youth and those less-educated was evident. Participants in rural Australia who were worried about becoming lonely were reportedly less happy than participants in major cities. This dataset provides a better understanding of factors that influence psychological well-being and quality of life in the Australian population and helps to determine whether happiness may be an associative factor that could mitigate self-feelings of anxiety and worry about loneliness.


Subject(s)
COVID-19 , Loneliness , Adolescent , Aged , Anxiety/epidemiology , Australia , Communicable Disease Control , Cross-Sectional Studies , Happiness , Humans , Pandemics , Quality of Life , SARS-CoV-2 , Self Report
11.
Microbiome ; 9(1): 91, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1183579

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by the enveloped RNA virus SARS-CoV-2 primarily affects the respiratory and gastrointestinal tracts. SARS-CoV-2 was isolated from fecal samples, and active viral replication was reported in human intestinal cells. The human gut also harbors an enormous amount of resident viruses (collectively known as the virome) that play a role in regulating host immunity and disease pathophysiology. Understanding gut virome perturbation that underlies SARS-CoV-2 infection and severity is an unmet need. METHODS: We enrolled 98 COVID-19 patients with varying disease severity (3 asymptomatic, 53 mild, 34 moderate, 5 severe, 3 critical) and 78 non-COVID-19 controls matched for gender and co-morbidities. All subjects had fecal specimens sampled at inclusion. Blood specimens were collected for COVID-19 patients at admission to test for inflammatory markers and white cell counts. Among COVID-19 cases, 37 (38%) patients had serial fecal samples collected 2 to 3 times per week from time of hospitalization until after discharge. Using shotgun metagenomics sequencing, we sequenced and profiled the fecal RNA and DNA virome. We investigated alterations and longitudinal dynamics of the gut virome in association with disease severity and blood parameters. RESULTS: Patients with COVID-19 showed underrepresentation of Pepper mild mottle virus (RNA virus) and multiple bacteriophage lineages (DNA viruses) and enrichment of environment-derived eukaryotic DNA viruses in fecal samples, compared to non-COVID-19 subjects. Such gut virome alterations persisted up to 30 days after disease resolution. Fecal virome in SARS-CoV-2 infection harbored more stress-, inflammation-, and virulence-associated gene encoding capacities including those pertaining to bacteriophage integration, DNA repair, and metabolism and virulence associated with their bacterial host. Baseline fecal abundance of 10 virus species (1 RNA virus, pepper chlorotic spot virus, and 9 DNA virus species) inversely correlated with disease COVID-19 severity. These viruses inversely correlated with blood levels of pro-inflammatory proteins, white cells, and neutrophils. Among the 10 COVID-19 severity-associated DNA virus species, 4 showed inverse correlation with age; 5 showed persistent lower abundance both during disease course and after disease resolution relative to non-COVID-19 subjects. CONCLUSIONS: Both enteric RNA and DNA virome in COVID-19 patients were different from non-COVID-19 subjects, which persisted after disease resolution of COVID-19. Gut virome may calibrate host immunity and regulate severity to SARS-CoV-2 infection. Our observation that gut viruses inversely correlated with both severity of COVID-19 and host age may partly explain that older subjects are prone to severe and worse COVID-19 outcomes. Altogether, our data highlight the importance of human gut virome in severity and potentially therapeutics of COVID-19. Video Abstract.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Child, Preschool , DNA , Gastrointestinal Microbiome/genetics , Humans , RNA , SARS-CoV-2 , Virome
12.
Gut ; 70(4): 698-706, 2021 04.
Article in English | MEDLINE | ID: covidwho-1024254

ABSTRACT

OBJECTIVE: Although COVID-19 is primarily a respiratory illness, there is mounting evidence suggesting that the GI tract is involved in this disease. We investigated whether the gut microbiome is linked to disease severity in patients with COVID-19, and whether perturbations in microbiome composition, if any, resolve with clearance of the SARS-CoV-2 virus. METHODS: In this two-hospital cohort study, we obtained blood, stool and patient records from 100 patients with laboratory-confirmed SARS-CoV-2 infection. Serial stool samples were collected from 27 of the 100 patients up to 30 days after clearance of SARS-CoV-2. Gut microbiome compositions were characterised by shotgun sequencing total DNA extracted from stools. Concentrations of inflammatory cytokines and blood markers were measured from plasma. RESULTS: Gut microbiome composition was significantly altered in patients with COVID-19 compared with non-COVID-19 individuals irrespective of whether patients had received medication (p<0.01). Several gut commensals with known immunomodulatory potential such as Faecalibacterium prausnitzii, Eubacterium rectale and bifidobacteria were underrepresented in patients and remained low in samples collected up to 30 days after disease resolution. Moreover, this perturbed composition exhibited stratification with disease severity concordant with elevated concentrations of inflammatory cytokines and blood markers such as C reactive protein, lactate dehydrogenase, aspartate aminotransferase and gamma-glutamyl transferase. CONCLUSION: Associations between gut microbiota composition, levels of cytokines and inflammatory markers in patients with COVID-19 suggest that the gut microbiome is involved in the magnitude of COVID-19 severity possibly via modulating host immune responses. Furthermore, the gut microbiota dysbiosis after disease resolution could contribute to persistent symptoms, highlighting a need to understand how gut microorganisms are involved in inflammation and COVID-19.


Subject(s)
Bacteria , COVID-19 , Dysbiosis , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract , Immunity , SARS-CoV-2 , Adult , Bacteria/genetics , Bacteria/immunology , Bacteria/isolation & purification , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , Cytokines/analysis , DNA, Bacterial/isolation & purification , Dysbiosis/epidemiology , Dysbiosis/etiology , Dysbiosis/immunology , Dysbiosis/virology , Female , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/virology , Hong Kong , Humans , Male , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Transferases/analysis
13.
Biophys Rev ; 12(4): 731-739, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-684363

ABSTRACT

In 2001, Cristobal dos Remedios was made Professor of Anatomy (now emeritus) within Australia's highest-ranked university (University of Sydney). For the majority of his career, he has examined the biomechanics and biophysics of human muscle contraction. To coincide with the occasion of his 80th birthday, this Special Issue has commissioned a collection of review articles from experts exploring biophysical subjects within the general areas of human anatomy and physiology. After introducing the scope and contents of the Issue, we provide a short scientific biography, placing his scientific achievements within the context of the course of his life's developments.

14.
Gastroenterology ; 159(4): 1302-1310.e5, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-621434

ABSTRACT

BACKGROUND & AIMS: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects intestinal cells, and might affect the intestinal microbiota. We investigated changes in the fecal fungal microbiomes (mycobiome) of patients with SARS-CoV-2 infection during hospitalization and on recovery. METHODS: We performed deep shotgun metagenomic sequencing analysis of fecal samples from 30 patients with coronavirus disease 2019 (COVID-19) in Hong Kong, from February 5 through May 12, 2020. Fecal samples were collected 2 to 3 times per week from time of hospitalization until discharge. We compared fecal mycobiome compositions of patients with COVID-19 with those from 9 subjects with community-acquired pneumonia and 30 healthy individuals (controls). We assessed fecal mycobiome profiles throughout time of hospitalization until clearance of SARS-CoV-2 from nasopharyngeal samples. RESULTS: Patients with COVID-19 had significant alterations in their fecal mycobiomes compared with controls, characterized by enrichment of Candia albicans and a highly heterogeneous mycobiome configuration, at time of hospitalization. Although fecal mycobiomes of 22 patients with COVID-19 did not differ significantly from those of controls during times of hospitalization, 8 of 30 patients with COVID-19 had continued significant differences in fecal mycobiome composition, through the last sample collected. The diversity of the fecal mycobiome of the last sample collected from patients with COVID-19 was 2.5-fold higher than that of controls (P < .05). Samples collected at all timepoints from patients with COVID-19 had increased proportions of opportunistic fungal pathogens, Candida albicans, Candida auris, and Aspergillus flavus compared with controls. Two respiratory-associated fungal pathogens, A. flavus and Aspergillus niger, were detected in fecal samples from a subset of patients with COVID-19, even after clearance of SARS-CoV-2 from nasopharyngeal samples and resolution of respiratory symptoms. CONCLUSIONS: In a pilot study, we found heterogeneous configurations of the fecal mycobiome, with enrichment of fungal pathogens from the genera Candida and Aspergillus, during hospitalization of 30 patients with COVID-19 compared with controls. Unstable gut mycobiomes and prolonged dysbiosis persisted in a subset of patients with COVID-19 up to 12 days after nasopharyngeal clearance of SARS-CoV-2. Studies are needed to determine whether alterations in intestinal fungi contribute to or result from SARS-CoV-2 infection, and the effects of these changes in disease progression.


Subject(s)
Coronavirus Infections/microbiology , Feces/microbiology , Fungi/isolation & purification , Gastrointestinal Microbiome , Mycobiome , Pneumonia, Viral/microbiology , Adult , Aged , Aspergillus flavus/genetics , Aspergillus flavus/isolation & purification , Aspergillus niger/genetics , Aspergillus niger/isolation & purification , Betacoronavirus , COVID-19 , Candida/genetics , Candida/isolation & purification , Candida albicans/genetics , Candida albicans/isolation & purification , Case-Control Studies , Community-Acquired Infections/microbiology , DNA, Fungal/analysis , Female , Fungi/genetics , Humans , Male , Metagenomics , Middle Aged , Nasopharynx/virology , Pandemics , Patient Discharge , Pneumonia/microbiology , SARS-CoV-2 , Time Factors , Young Adult
15.
Gastroenterology ; 159(3): 944-955.e8, 2020 09.
Article in English | MEDLINE | ID: covidwho-324569

ABSTRACT

BACKGROUND & AIMS: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects gastrointestinal tissues, little is known about the roles of gut commensal microbes in susceptibility to and severity of infection. We investigated changes in fecal microbiomes of patients with SARS-CoV-2 infection during hospitalization and associations with severity and fecal shedding of virus. METHODS: We performed shotgun metagenomic sequencing analyses of fecal samples from 15 patients with Coronavirus Disease 2019 (COVID-19) in Hong Kong, from February 5 through March 17, 2020. Fecal samples were collected 2 or 3 times per week from time of hospitalization until discharge; disease was categorized as mild (no radiographic evidence of pneumonia), moderate (pneumonia was present), severe (respiratory rate ≥30/min, or oxygen saturation ≤93% when breathing ambient air), or critical (respiratory failure requiring mechanical ventilation, shock, or organ failure requiring intensive care). We compared microbiome data with those from 6 subjects with community-acquired pneumonia and 15 healthy individuals (controls). We assessed gut microbiome profiles in association with disease severity and changes in fecal shedding of SARS-CoV-2. RESULTS: Patients with COVID-19 had significant alterations in fecal microbiomes compared with controls, characterized by enrichment of opportunistic pathogens and depletion of beneficial commensals, at time of hospitalization and at all timepoints during hospitalization. Depleted symbionts and gut dysbiosis persisted even after clearance of SARS-CoV-2 (determined from throat swabs) and resolution of respiratory symptoms. The baseline abundance of Coprobacillus, Clostridium ramosum, and Clostridium hathewayi correlated with COVID-19 severity; there was an inverse correlation between abundance of Faecalibacterium prausnitzii (an anti-inflammatory bacterium) and disease severity. Over the course of hospitalization, Bacteroides dorei, Bacteroides thetaiotaomicron, Bacteroides massiliensis, and Bacteroides ovatus, which downregulate expression of angiotensin-converting enzyme 2 (ACE2) in murine gut, correlated inversely with SARS-CoV-2 load in fecal samples from patients. CONCLUSIONS: In a pilot study of 15 patients with COVID-19, we found persistent alterations in the fecal microbiome during the time of hospitalization, compared with controls. Fecal microbiota alterations were associated with fecal levels of SARS-CoV-2 and COVID-19 severity. Strategies to alter the intestinal microbiota might reduce disease severity.


Subject(s)
Betacoronavirus , Coronavirus Infections/microbiology , Dysbiosis/virology , Feces/microbiology , Gastrointestinal Microbiome/genetics , Pneumonia, Viral/microbiology , Adult , Aged , COVID-19 , Female , Gastrointestinal Tract/microbiology , Hong Kong/epidemiology , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Pandemics , Pilot Projects , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL